Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system
نویسندگان
چکیده
Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System (VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Evidence for Recent Large Magnitude Explosive Eruptions at Damavand Volcano, Iran with Implications for Volcanic Hazards
Damavand is a large dormant stratovolcano in the Alborz Mountains of northern Iran located in one of the most populous provinces, which could be adversely affected by tephra fall from Damavand. The youngest known eruption is a lava flow on the western flanks with an age of 7.3 ka. The volcanic products are predominantly porphyritic trachyandesite. Three major young pumice deposits, named here a...
متن کاملUsing Wind Data to Predict the Risk of Volcanic Eruption: An Example from Damavand Volcano, Iran
Damavand volcano is located 60 km to the East North- East of Tehran. It is a dormant stratovolcano outcrop in the Alborz Mountains of northern Iran and is the highest mountain (5670 m) in the Middle East and West Asia. Mazandaran Province, one of the most populous provinces by population density, Semnan and Gorgan provinces further east are neighbours of the Damavand. Volcanism in Damavand goes...
متن کاملModelliing of Earlly Warniing Indiicators of Currency Crisis: Emphasizing the Evaluation of the Relationship Between Currency Crisis and Capital Control Index
Predicting currency fluctuations and crises is an important step in the foreign exchange policy of countries. Given that the purpose of early warning systems or patterns is to anticipate crises, their use is essential to prevent economic crises, including currency crises. Therefore, the purpose of this study is to model and rank the early warning factors of currency crisis by Bayesian averaging...
متن کاملThe critical role of volcano monitoring in risk reduction
Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, b...
متن کاملInvestigating the topography effect in modeling of deformation field of CampiFlegrei volcano using the method of fundamental solution
Considering the importance of predicting volcano eruption and the large number of volcanic peaks across the world, having enough researches in this field is vital. Based on geodetic researches, surface deformation of the earth in the form of uplift or subsidence in the volcanic region, is an indicator of the magma's movement respectively towards the crater or the exit from the tank around. In...
متن کامل